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1 Introduction

The analysis of the scattering and diffraction by open-

ended metallic waveguide cavities has been of great in-

terest recently in connection with the prediction and

reduction of the radar cross section (RCS) of a target.

This problem serves as a simple model of duct structures

such as jet engine intakes of aircrafts and cracks occur-

ring on surfaces of general complicated bodies. There-

fore the investigation of a scattering mechanism in case

of the existence of open cavities is an important subject

in the field of the RCS prediction and reduction. Some

of the cavity diffraction problems have been analyzed

thus far using a variety of different analytical and nu-

merical methods. If the cavity dimensions are small in

comparison to the incident wavelength, numerical tech-

niques such as the method of moments (Senior, 1976)

and the finite element method (Jeng, 1990) can be ap-

plied efficiently. For large cavities with uniform cross

sections, the results based on the waveguide modal ap-

proach by the use of the reciprocity relationship and the

Kirchhoff approximation have been reported (Altintas,

Pathak, and Liang, 1988; Ling, Lee, and Chou, 1989).

In order to describe systematically the scattering mech-

anism as related to a fairly general class of large cavi-

ties with reasonable accuracy, the three ray-based ap-

proaches, namely, the method of shooting and bouncing

rays, the Gaussian beam method, and the generalized

ray expansion method have been developed (Ling, Lee,

and Chou, 1989; Pathak and Burkholder, 1991). Fur-

thermore, hybrid techniques such as the asymptotic/

modal approach and the boundary integral/modal ap-

proach (Ling, 1990) have also been established. These

hybrid approaches take advantage of the efficiency of the

modal analysis as well as the flexibility of asymptotic or

numerical techniques. Most of these analysis methods

incorporate the scattering from the interior of the cav-

ity including the rim diffraction at the open end, but

they do not rigorously take into account the scattering
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effect arising from the entire exterior surface of the cav-

ity. Therefore, final solutions due to these approaches

are valid only for the restricted range of incidence and

observation angles. In addition, these solutions may

not be uniformly valid for arbitrary dimensions of the

cavity.

The Wiener-Hopf technique is known as a powerful

tool for analyzing electromagnetic wave problems asso-

ciated with canonical geometries, which is mathemat-

ically rigorous in the sense that the edge condition is

explicitly incorporated into the analysis. Kobayashi

(1993) considered a finite parallel-plate waveguide with

a planar termination at the open end as an example

of simple two-dimensional (2-D) cavity structures, and

solved the plane wave diffraction problem rigorously us-

ing the Wiener-Hopf technique. As a result, an effi-

cient approximate solution has been obtained, which

is valid for the cavity depth greater than the incident

wavelength. Kobayashi and Koshikawa (1993, 1994,

1996) have further considered 2-D material-loaded cavi-

ties formed by finite and semi-infinite parallel-plate

waveguides, and carried out a rigorous RCS analysis

by means of the Wiener-Hopf technique. It has been

shown by numerical computation that the results are

valid over a broad frequency range and can be used as

a reference solution for validating more general-purpose

computer codes based on approximate methods.

2 Development of New Rigorous Methods for a

Circular Waveguide Cavity

2.1 Vector diffraction problem

We shall generalize the technique, previously devel-

oped for a rigorous analysis of the 2-D diffraction by

parallel-plate waveguide cavities, to the analysis of the

three-dimensional (3-D) vector diffraction by open-

ended cavity structures. Let us consider a semi-infinite

circular waveguide with an interior planar termination

as shown in Fig. 1 [1-3], where (ρ, ϕ, z) are cylindri-

cal coordinates. It is assumed that the circular cavity

is excited by non-symmetric electromagnetic waves of a

hypothetical generator with voltage of unit amplitude

across an infinitesimally small gap at the interior cylin-

drical face.

The mixed boundary value problem mentioned above

Fig.1 Semi-infinite cylinder with an internal plate internal

termination

for the wave diffraction by a cylindrical waveguide cav-

ity involves the unknown TM and TE scalar potentials

and the problem is stated as follows:(
∆+ k2 0
0 ∆ + k2

)(
u1(ρ, z)
u2(ρ, z)

)
=

(
0
0

)
. (1)

The boundary condition at the cylindrical surface z ∈
(−∞, L) with ρ = b+0 and z ∈ (−L,L) with ρ = b−0 :(

ϑ[∂2/∂z2 + k2] 0
ϑmρ−1∂/∂z ∂/∂ρ

)(
ut1
ut2

)
=

(
0
0

)
.(2a)

The boundary condition at the plate termination ρ ∈
(0, b), z = −L :(

ϑmρ−1∂/∂z ∂/∂ρ
ϑm∂2/∂ρ∂z m/ρ

)(
ut1
ut2

)
=

(
0
0

)
. (2b)

Here ϑ = i(ωε)−1 and m is the number of the azimuth

mode.

Taking the Fourier transform of (1) appropriately, we

derive the transformed wave equations with unknown

inhomogeneous terms comprising the field potentials

and their normal derivatives on the surface of the in-

terior planar termination, with the result that(
T̂ 0

0 T̂

)(
U1(ρ, α)
U2(ρ, α)

)
=

(
0
0

)
in ρ > b

for |τ |< k2, (3)

(
T̂ 0

0 T̂

)(
Φ1(ρ, α) + eiαLΨ+

1 (ρ, α)
Φ2(ρ, α) + eiαLΨ+

2 (ρ, α)

)
= e−iαL

×
(

g̃1(ρ)− iαf̃1(ρ)

g̃2(ρ)− iαf̃2(ρ)

)
in 0< ρ < b for τ >−k2,(4)

where α = Reα + iImα(≡ σ + iτ) with l = 1, 2, T̂ =

[d2/dρ2 + ρ−1d/dρ − (γ2 + m2/ρ2)], γ = (α2 − k2)1/2

with Reγ > 0, and f̃l(ρ), g̃l(ρ) are the unknown inho-

mogeneous terms defined by

f̃l(ρ) = (2π)
−1/2utl (ρ,−L),

g̃l(ρ) = (2π)
−1/2∂utl(ρ, z)/∂z|z=−L. (5)
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The terms on the left-hand sides of (3) and (4) are the

Fourier transforms of the unknown functions in (1) and

(2), being defined by

Ul(ρ, α)=(2π)
−1/2

∫ +∞

−∞
ul(ρ, z)e

iαzdz, for ρ > b, (6a)

Ul(ρ, α)=(2π)
−1/2

∫ +∞

−L

ul(ρ, z)e
iαzdz, for ρ < b, (6b)

U+
l (ρ, α) =

1√
2π

∫ +∞

+L

ul(ρ, z)e
iα(z−L)dz, (6c)

Φl(ρ, α) =
1√
2π

∫ +L

−L

utl(ρ, z)e
iαzdz.(6d)

It is found that U+
l (ρ, α) are regular in the half-plane

τ > −k2 and Φl(ρ, α) with l = 1, 2 are entire func-

tions. Using the notation as given by (6), we may ex-

press Ul(ρ, α) as

Ul(ρ, α) = Φl(ρ, α) + eiαLΨ+
l (ρ, α)− U i

l (ρ, α) (7)

for 0 < ρ < b, where

Ψ
(+)
l (ρ, α) = U+

l (ρ, α) +Q+
l (ρ, α), (8)

Q+
1 (ρ, α)=

ωε

(2π)3/2

∫ +∞+iε+

−∞+iε+

Im(γβρ)e
iβ(d−L)

γ2
βIm(γβb)

dβ

α−β
, (9)

U i
1(ρ, α)=

ωεe−iαL

(2π)3/2

∫ +∞+iε+

−∞+iε+

Im(γβρ)e
iβ(d+L)

γ2
βIm(γβb)

dβ

α−β
,(10)

In (9) and (10) the constant ε+ is taken such that −k2 <

ε+ < τ .

The main idea is to derive the expressions of the func-

tions in (5) in terms of the Fourier-Bessel and Dini series

as well as the static terms with common unknown coef-

ficients due to the correct separation of the variables for

(1) and (2) and then to account for the interaction of

TM and TE waves. This allows finding the field image

in Fourier transform domain. Since the scattered field

for the region ρ > b must vanish as ρ → ∞ according to

the radiation condition, we find by taking into account

the boundary conditions at the termination the solu-

tions of (3) and (4). This leads to a scattered field rep-

resentation in the Fourier transform domain. Using the

boundary conditions for the field components ez(ρ, z),

eϕ(ρ, z) at the cylindrical surfers with ρ = b and the con-

ditions of continuity for the field components hz(ρ, z),

hϕ(ρ, z) with ρ = b and L < z < ∞ in the Fourier

Fig.2 Geometry of the problem

transform domain, we derive the Wiener-Hopf equation

as well as the set of linear algebraic equations of the

second kind after the factorization and decomposition

procedure, which leads to a rigorous solution for arbi-

trary physical parameters. An approximate solution is

further derived for the case where the dominant propa-

gating TE and TM modes consecutively appear in the

circular cavity of large depth.

2.2 Axially symmetric case

The scalar-type transition under co-phasal distribu-

tion of the electric voltage in the generator as well as a

generalization of the approach to a more realistic model

involving an open-ended finite circular waveguide cav-

ity as shown in Fig.2 are also investigated [4-6]. The

axially symmetric mixed boundary value problem for

the above-mentioned problem of wave diffraction by a

cylindrical waveguide cavity now involves the unknown

TM scalar potential and is stated as follows:

∆φ+ k2φ= 0. (11)

The boundary condition at the cylindrical surface

z∈(−L, L) with ρ=b± 0 : [∂2/∂z2+k2]φt=0. (12)

The boundary condition at the plate termination

ρ ∈ (0, b) with z =−L± 0 : ∂2/∂ρ∂z[φt] = 0. (13)

Taking the Fourier transform of (11), we derive the

transformed wave equations with unknown inhomoge-

neous terms which comprise the field potential on the

opposite surfaces of the planar termination. Expand-

ing these terms into the convergent Fourier-Bessel se-

ries and applying the above-mentioned technique, we
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obtain the correct field image in the Fourier trans form

domain. This allows to formulate the problem in terms

of the Wiener-Hopf equation, which is solved via the

factorization and decomposition procedure. Finally we

obtain the exact solution with the result that

E−(b, α) +M−(α)

×

[
J

(1)
E (α) +

∞∑
n=1

M+(iγn)E−(b,−iγn)

iγn(α− iγn)

]
=M−(α)R−(α), (14)

E+(b, α)−M+(α)

×

[
J

(2)
E (α) +

∞∑
n=1

e−4γnLM+(iγn)E+(b,−iγn)

iγn(α+ iγn)

]
=M+(α)R+(α), (15)

where

J
(1,2)
E (α)

=
1

2

∫ ±i∞±k

±k

e±2iνLM±(ν)E±(b, ν)

γ2
νK0(γνb)[K0(γνb)−iπI0(γνb)]

dν

ν−α
.(16)

Here E±(b, α) are the unknown functions in the trans-

form domain for ez(b, z); R±(α) and M±(α) are known

functions which are regular in the half-planes τ>< ∓ k2.

In (15), I0(·) and K0(·) are the modified Bessel func-
tions of the first and second kinds, respectively.

The solution is exact but formal, since singular infi-

nite branch-cut integrals (16) with unknown integrands

are involved. Then taking into account the exponen-

tially decaying behavior of the integrand (16), we can

express J
(1,2)
E (α) for large |k|L by keeping only the lead-

ing term for the asymptotic expansion with the result

that,

J
(1)
E (α)∼ 1

2
e2ikLb2χ(α)M+(k)E+(b, k),

J
(2)
E (α)∼ 1

2
e2ikLb2χ(−α)M+(k)E−(b,−k), (17)

where

χ(α) =

∫ ∞

0

e−2tL

[t− i(k − α)]R0(t)
dt (18)

with

R0(t) = 2itkb
2K0

(
i1/2

√
2ktb2

)
×

[
K0

(
i1/2

√
2ktb2

)
− iπI0

(
i1/2

√
2ktb2

)]
,(19)

|α− k|> 0 and − π/2< arg(α− k)< 3π/2. (20)

The integral (18) is uniformly convergent because of the

integrable singularity R0(t) = O(t(ln t)2) for t → 0 and

the conditions (20).

Next we derive the approximate expressions of E−(α)

and E+(α) which lead to the two sets of 2N + 2 equa-

tions, where N is a large positive integer. These equa-

tions can be solved numerically with high accuracy. Ap-

proximation procedures based on a rigorous asymptotics

are presented and an approximate solution of the

Wiener-Hopf equation is derived. The scattered field

inside and outside the cavity is evaluated by taking the

inverse Fourier transform and applying the saddle point

method of integration.

3 Numerical results and discussion

Based on the mentioned above results, we have car-

ried out numerical computations and give representa-

tive numerical examples of the radiation patterns for

the amplitude of the electric components for various

physical parameters. We have computed electric field

components |e∗z| = |ez(ρ, z)R| and |e∗ρ| = |eρ(ρ, z)R| as
R → ∞, where (R, θ) are cylindrical coordinates de-

fined by z = R cos θ, ρ = R sin θ for 0 < θ < π. Figure

3 shows the far field amplitude of e∗z and e∗ρ as a func-

tion of observation angle. It is seen from the figure that

the radiated field oscillates rapidly with an increase of

the cavity dimension. This sharp oscillation for larger

cavities is due to the effect of the multiple diffraction

between the aperture and the back corner. Next we

evaluate the power of TM waves radiated from the cav-

ity through the elementary surface dS = sin θdθdϕ. The

radiated power P is found to be

P (θ)∼ 0.5(ε/µ)1/2|ez(ρ, z)/ sin θ|2R2.

We investigate the power radiated from the cavities as a

function of the observation angle and cavity parameters.

Figure 4 shows that, with an increase of the cross sec-

tion of the cavity, dominant peaks of oscillations of the

radiated power are formed in the region 75◦ < θ < 105◦.

The focusing effect of the radiated power is found in the

direction θ = 90◦ for short cavities.
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(a) Far field amplitude |e∗z |. (b) Far field amplitude |e∗ρ|.

Fig.3 Radiation pattern of electric field components e∗z and e∗ρ for d/L = 0.

Line 1: 2b = 10λ, L/b = 1. Line 2: 2b = 2λ, L/b = 5.

(a) 1: 2b = 2λ, L/b = 10; 2: 2b = 4λ, L/b = 5;
3: 2b = 10λ, L/b = 2

(b) 2b = 10λ; 1: L/b = 0.1; 2: L/b = 0.5;
3: L/b = 1

Fig.4 Power of the radiation energy for d/L = 0.0

4 Conclusions

We have analyzed the vector diffraction problem for a

circular waveguide cavity rigorously using the Wiener-

Hopf technique. The method of solution is a generaliza-

tion of the approach we have established previously for

the analysis of the parallel-plate waveguide with a pla-

nar termination and it uses the infinite Fourier-Bessel

and Dini series in the formulation, and rigorously in-

volves the interaction between TM and TE types of

waves. The key equations for investigation of the elec-

tromagnetic fields scattered by the cylindrical waveg-

uide cavity in the vector case are derived.

For investigating the axial symmetric electromagnetic

fields scattered by the cylindrical waveguide cavity nu-

merically, approximate procedures and an approximate

solution of the Wiener-Hopf equation are derived.

Based on these results, we have carried out numerical

computations and showed representative numerical ex-

amples of the radiation patterns for amplitude of the

electric components and the power radiated from the

cavities for various physical parameters. Some compar-

isons with exact solution for infinite and semi infinite

cylinders have also been made.
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