楕円暗号と認証システムに関する研究

研究代表者 研究員

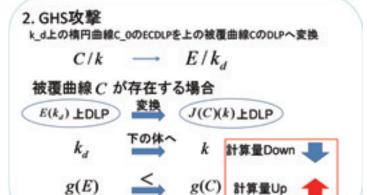
The GHS attack is known to map the discrete logarithm problem (DLP) in the Jacobian of a curve C 0 defined over the d degree extension of a finite field k to the DLP in the Jacobian of a new curve over k which is a covering curve of C_0. This attack is very powerful. e.g., in the case of d=3, security of ECC with 160-bit key length is reduced to security of 107-bits. In this research, we show a complete classification of all elliptic curves subjected to the GHS attack over prime degree extensions of finite fields with odd characteristic. Furthermore, we present a detailed analysis on k-isomorphic classes of these curves. In particular, we show orbit-decomposition of them under action of PGL(2, k) in case of d= 2 and evaluate genera of C over k among each PGL-orbits.

1. はじめに

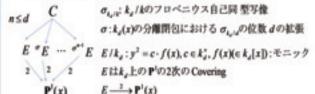
楕円曲線暗号(ECC)とは有限体上の楕円曲線の有理点を用いた離 飲対数問題(ECDLP) の困難性を利用した公開鍵暗号である。他の公 開鍵暗号より鍵長を短く取れることで実装面などで優位性をもつ、特 にソフトウェア実装においては、奇標数有限体の拡大体上定義した情 円曲線を用いる高速化手法が知られている。

一方で拡大体上定義された楕円曲線に対する攻撃方法としてGHS 攻撃が知られている.この攻撃は,ECCの安全性を160-bitから107-bit とするなど現存暗号系に対して強力に働く場合がある。この攻撃を受 ける奇標数有限体上の楕円曲線の従来の分類は全ての曲線を網羅 しているわけではない、そこで本研究では、以下を目的とする。

- 1. 奇標数有限体の素数次拡大体上被覆曲線 C を持つ(= GHS 攻撃を受けうる)楕円曲線 C_0 の完全な分類
- 2. それらの曲線に対してGHS 攻撃への耐性の考察



3.GHS攻撃を受けうる楕円曲線の分類 Cの存在を仮定した場合の被覆の様子は



よって $cov(C/P^1) \cong F_2^n$, ここに σ が作用しているので び を線形写像の行列表現ととらえ分類

- E/k₄: y² = c·f(x)のc∈k² の決定
- E/P の分岐点の候補の導出
- 3. E/k, の方程式 f(x)の導出

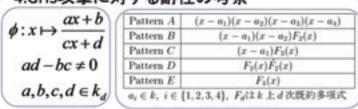
を行うことによって、被覆曲線でを持つ楕円曲線で、を分類した

例) d = 2 の場合の分類

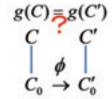
(Case)	Ħ	e	g(C)	$h_d(x)$	degh[z
(1)	2	0	2	$(x - \alpha_1)$	3
(2)	2	1	3	$(x - \alpha_1)(x - \alpha_2)$	2
(3)	2	2	4	$(x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$.1
(4)	2	3	- 5	$(x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4)$	0
(sub)		П			4

 $f(x) = h_d(x) \cdot h(x), h_d(x) \in k_d[x] \setminus k[x], h(x) \in k[x]$

4.GHS攻撃に対する耐性の考察



k』上の同型写像



k,上のf(x)の分岐パターン

全体として計算量が削減されれば攻撃は成功

 ϕ によって g(C) は変化する 可能性がある. しかし、Ø によって分岐パターン は変化しないため、分岐パターン 毎に ø の作用による軌道分解を 求めた ※ D.E は3次への同型がないため除外

分岐パターン	軌道に含まれる曲線	g(C)
Pattern A	(1), (2), (3), (4), & (sub)	2, 3, 4, 5
Pattern B	(2),(3),(4)	3, 4, 5
Pattern C	(1), (3), (4)	2, 4, 5
	(sub) ≥ (3), (4)	4.5

全軌道が g(C) = 4,5 を含む. C上DLPの計算量は g(C) > 3 に対し g(C) で評価

→ d = 2 の場合GHS攻撃を受ける